Zero knowledge proof

Logup-GKR batching concept

IOP: prove evaluation of a multi-linear extension polynomial

a cyclic group in base Field \( \mathbb{H} \) (STARK trace …

Logup GKR in an example

traces:

\(a: [a_0,a_1,a_2,a_3,a_4,a_5,a_6,a_7]\)

\(b: [b_0,b_1,b_2,b_3,b_4,b_5,b_6,b_7]\)

goal:

prove logup relation:

\(\sum\limits_{i=0}^{i=7}\frac{1}{a_i+\alpha}=\sum\limits_{i=0}^{i=7}\frac{1}{b_i+\alpha}\)

what are available:
  • commitments to the traces via FIR:

\(\text{commit}[a(x)]\)

\(\text{commit}[b(x)]\)

note: \(a(x),b(x)\) denote the polynomials’ evaluation in trace domain, \(x\) comes from cyclic group.

  • GKR circuit: give a

logup GKR stwo implementation steps

Include challenge in input MLE

Logup GKR – 3: Air constraint for STARK

Logup GKR 2

following previous post

Input Layer Encoding (witness encoding)